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Scientific Progress






(1) Foreword
This report details the scientific progress of PARC team in the GLAD-PC project for the period of 08/01/2013- 07/31/2014. This 
research has been funded by the DARPA/ADAMS program under contract W911NF-11-C-0216. Any opinions, findings, and 
conclusions or recommendations in this report and associated material are those of the authors and do not necessarily reflect 
the views of the governmentfunding agency.

(2) Table of Contents (None)

(3) List of Appendixes: 
• Detecting insider threat from enterprise social and online activity data
• Temporally Coherent Role-Topic Models (TCRTM): deinterlacing overlapping activity patterns
• Detecting employee churn from enterprise social and online activity data
• PARC-ADAMS-PI-Meeting-20150305_v4

(4) Statement of the problems studied
The PARC team investigated three approaches to detecting aspects of malicious insider activity: a) psychological profiling from 
email; b) quitting dynamicsand quitting prediction from corporate social media data; and c) detecting unusual and anomalous 
behavior from on-line activities.

(5) Summary of the most important results
With regard to (a) Psychological profiling from email: we have defined a Bayesian model for the motivations and psychology of 
the malicious insider and an associated degree of interest. We aimed then to predict the derived psychological variables 
automatically from text in emails. Several large studies have been conducted involving over 1000 subjects. We measured the 
subjects' psychology using surveys and collected anonymized features from their email communications. We were able to 
predict the subjects' psychological variables with up to 95% accuracy (see [Shen1]). The constructed predictors have been 
applied to various real-world data sets including large corporate email data sets. The results have been made accessible to 
analysts via a specific personality prediction visualization called the Interactive Personality Workbench (described in last years 
AUG 2013 – JUL 2014 Interim Report). Initial feedback we received from the analysts is very positive.

With regard to (b) quitting dynamics and quitting prediction from corporate social media data.  Last year, we have looked into 
predicting if and when people quit a corporation using their activity on an internal social media network called Yammer. We got 
access to a data set of over 24,000 corporate users of this internal social media network of a large corporation, including over 
2,000 groups and over 150,000 public messages. The goal was to predict, at any given time instance, if an employee is likely to 
quit the company. For quitting the company, we have identified 298 quitter instances among 7000 non-quitter instances (after 
cleaning and filtering the data set according to appropriate parameters, e.g. number of messages and activity scores). Using a 
random forest and a balanced data sets (50% baseline), we get an accuracy of 68%, which means an improvement of 36% 
over the baseline. A detailed summary of the results including figures and tables can be in [Gavai1]. 

During this last year we extended this work quitting dynamics by studying employee churn behavior. Employee churn is a 
significant concern for organizations, with downsides including loss of talent, its productivity, and also security risk, given that 
employees are likely to retain confidential company data after they quit. PARC developed hypothesizes that precursors to an 
employee quitting a company will manifest in the enterprise social and online activity data of the employee. To this end, we 
processed and extracted relevant features from social data including email communication patterns and content, and online 
activity data such as web browsing patterns, email frequency, and file and machine access patterns, and used these features to 
build a predictive model for detecting employee quitting events ahead of time. We tested our predictive models on two different 
real world data sets, and our experiments show that we are able to detect quitting events with moderately high accuracy. 
Finally, we build a visualization dashboard that enables managers and HR personnel to quickly identify employees with high 
quitting scores, which will enable them to take suitable preventive measures to reduce, churn [Sricharan2, attached].

Regarding (c) detecting unusual and anomalous behavior from on-line activities, PARC investigated techniques to discover 
insider threat in organizations by identifying abnormal behavior in enterprise social and online activity data of employees. To 
this end, we processed and extracted relevant features that were possibly indicative of insider threat behavior. This includes 
features extracted from social data including email communication patterns and content, and online activity data such as web 
browsing patterns, email frequency, and file and machine access patterns. Subsequently, we detect statistically abnormal 
behavior with respect to these features using state-of-the-art anomaly detection methods, and declare this abnormal behavior 
as a proxy for insider threat activity. We tested our approach on a real world data set (the Vegas data set from ADAMS) with 
artificially injected insider threat events. Our experiments show that our proposed approach is fairly successful in identifying 
insider threat events. Finally, we build a visualization dashboard that enables managers and HR personnel to quickly identify 
employees with high threat risk scores, which will enable them to take suitable preventive measures and limit security risk 
[Sricharan1, attached].




PARC also investigated the specific problem of identifying overlapping activity patterns in the VEGAS data set. The Temporally 
Coherent Role-Topic Model (TCRTM) is a probabilistic graphical model for analyzing overlapping, loosely temporally structured 
activities in heterogeneous populations. Such loose temporal structure appears in many domains, but especially in the ADAMS 
data, where individual events that make up an activity have coherence, but no strong temporal ordering. For instance, preparing 
a PowerPoint presentation may involve opening files, typing text, downloading images, and saving files. These activities occur 
together in time, but without a strong ordering or fixed duration. These temporally coherent activities may also overlap – the 
user might also be responding to email while working on the presentation. Finally, the population of users has subgroups – in 
the office, administrators, salespeople and engineers will have different activity distributions. The unique architecture of the 
TCRTM model allows it to automatically infer an appropriate set of roles and activity types while simultaneously assigning users 
to these roles and segmenting their event streams into high-level activity instance descriptions. On two real-world datasets 
taken from computer user monitoring and social services debit card transactions we show that TCRTM extracts semantically 
meaningful structure and improves perplexity score on hold-out data by a factor of five compared to standard models such as 
LDA [Bart1, attached].

All of these results and summary of PARCs work on ADAMS was presented at the final ADAMS PI Meeting, held at DARPA, in 
March 2015 (the briefing slides are attached).
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Technology Transfer

See attachment: Technology transition from PARC
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Personality and Anomalous Behavior
• Organizations (and society) face increasing 

amount of threats from “inside” and 
“outside”

• Challenge: Uncover malicious behavior in a 
timely way through automatic analysis

• Anomalous behavior trace often precedes 
the actual “incident”

• Personality has been shown to be a reliable 
indicator for future (malicious) behavior 
(Jaclyn et al., 2011)

• 50% of job quitters steal confidential 
company data
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ADAMS GLAD-PC

• PARC project: 
– Graph Learning and 

Anomaly Detection 
using Psychological 
Context (GLAD-PC)

– Idea: combine graph 
learning / structural 
anomaly detection and 
psychological modeling



Previous Research: Personality Profiling 
for Malicious Insider Detection
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[1] Jaclyn M. Jensen, Pankaj C. Patel, Predicting counterproductive work behavior from the interaction of 
personality traits, Personality and Individual Differences 51(4):466-471, Sept. 2011.

• We are interested in psychological profiles as a 
indicators for future malicious behavior

• Why ?
• Counterproductive (cyber-)behaviors have been shown to be 

highly correlated with Big-5 personality variables [1]

• Actual insider threats have a low base rate  psychological 
profiles are a powerful filter to reduce false positives



What is a Personality Profile?

Personality Variables

Neuroticism

Agreeableness

Conscientiousness

Excitement Seeking

Hostility

Extraversion

Self-Assurance

Overall Mood/Emotion

Organizational Deviance

Personal Deviance

Perceived Stress

Degree of 
Interest

Organizational CPB
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

7.64
23.5
36.1
24.6
8.15

50.2 ± 12

Agreeableness
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10

Perceived Life Stress
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

5.60
25.5
41.0
22.9
5.10

49.6 ± 11

Individual CPB
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

7.24
23.3
36.8
24.7
7.96

50.3 ± 12

JobSatisfaction
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.95
24.1
41.7
24.2
4.98

50 ± 10

Excitement Seeking 
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10

Personal Stressors 
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10

Perceived Job Stress 
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.79
24.0
42.1
24.3
4.78

50 ± 10

Environmental Stressors
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

0.21
8.03
42.6
40.2
8.92

55.2 ± 8.8

Job Stressors 
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10

Conscientiousness
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10

Degree of Interest
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.99
22.0
39.2
26.4
7.31

51 ± 11

Capability 
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10

Hostility
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
22.0
40.7
26.2
6.45

50.8 ± 11

Neuroticism
20 to 35
35 to 45
45 to 55
55 to 65
65 to 80

4.56
24.1
42.6
24.1
4.56

50 ± 10



Approach

• Idea: automatically estimate personality from emails

“feature” 
anonymization

organizational
email

11:1 20:-1
30:1
31:3
32:0
33:0
34:0
35:1
36:0
37:0

Machine 
Learning 

(survival model, 
SVM classifier)

Machine 
Learning 

(survival model, 
SVM classifier)

Large training data 
corpus (MechTurk, 
company-internal)

Personality 
Estimators
Personality 
Estimators

Viz: Interactive 
Personality 
Workbench

Viz: Interactive 
Personality 
Workbench



Results

• Data Collection & Evaluation Results (of Estimators):
– Over 1000 personality profiles + emails collected from MechTurk and 

company-internal (for training the estimations)
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Previous Research: Quitting and 
Destructive Group Dynamics

• We are interested in quitting behavior & 
destructive group dynamics

• Proxy of malicious behavior: “50% job leavers steal 
confidential company data”

• Questions:
– Can we observe quitting behavior and destructive 

group dynamics in real-world and social space
– How is real-world behavior related to social space data 
– Can we predict real-world behavior 
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Previous Research on Quitting Behavior
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Churn 
prediction in 
a real-world 
corporation

Predict quitting based on 
work practice, email, and 
content. 

Work practice 
features  

Email graph  
features 

Content 
features 

Database 
~180,000 emails 
~18,000 sent 
up to 2yr observation 

Correlation 

Destructive group 
dynamics 
• if/when a player will 

quit a guild
• damage associated 

with a quit event
• guild stability against 

member loss

Real-world 
corporation

user group

Online Games Startup Venture Yammer



2014 Summer Intern - Yiran Wang
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Voluntary 
Turnover 
(Quitting)

Voluntary 
Turnover 
(Quitting)

Affect and 
Emotional 

Contagion in 
Workplace

Affect and 
Emotional 

Contagion in 
Workplace

Computer-
Mediated 

Communication 
in Workplace

Computer-
Mediated 

Communication 
in Workplace

• Recent quitters
• N=12 (Male = 9, Female = 3)
• Job titles include: 

• research scientist (2)
• software engineer (3)
• research engineer (2)
• director/manager (1)
• senior associate in a bank (1)
• system engineer (1)
• manufactory engineer (1)
• office manager (1)

Literature Search Structured Interviews

.



Interview Results

• Web Browsing
– Increased use of career 

sties (e.g., LinkedIn)
– Increased browsing of 

company profiles
• Personal Email

– Increased use of personal 
email for job applications

• Work Email
– No conscious change
– Some made an effort to 

maintain normal email 
behavior

• Work Routine
– Shortened work hours and 

more time off to 
accommodate interviews

• Multitasking
– Shortened attention spans 

at work
– more task switching

• Engagement
– Decreasing engagement in 

general
– More neutral sentiment in 

emails
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Features Selection/Engineering

• Extract a rich set of features:
• Email Usage (‐sent count)
• Email Content (‐subject char length)
• Log On / Log Off Statistics
• Application Activity (+max time spent on 

activity, + # of activity types per day)
• Web Usage (time on –internal/+job sites)
• Feature matrix F: U x T x D
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This Year’s Problem Set-up 
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Vegas 
Database

Features

Web Usage 

App. Activity

Logon/Logoff

Email Content

Email Usage Quitting 
Classifier

Quitting 
Prediction

Anomaly 
Detector

Anomaly 
Prediction

Quitting
Examples
Quitting

Examples



Problem set-up

• Twin approaches:
• Supervised – Use quitting labels as proxy 

• Build classifier to predict quitters and 
corresponding time instances

• Unsupervised – Use anomaly detection 
methods to detect abnormal behavior
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Vegas Dataset 

• Multi-Domain Employee Data
• Anonymized application-wise log of User 

activity
• Anonymized activity log of user interactions with 

different agents
• Email interaction data between business unit 

users 
• Aggregated statistics on Email content data
• Snapshots of LDAP hierarchy
• Day-to-day LDAP diffs
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Vegas Dataset 
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Dataset Statistics

Date range 2013-10-01 to 2014-07-01 
(8 months)

Users 6805 users

Dataset Size ~ 1 billion User Activity Records

Domains Email Usage, Email Content, Logon Logoff, 
Application Usage, Web Usage

Target Users - 555 Quitters (1270 Pseudo)
- 104 Red Team Users



Feature Extraction

• Calculated aggregate 
features from raw data 

• Constructed features in 5 
different domains

• Features developed from 
earlier Yammer work were 
supplemented with newer 
ones derived from insights 
gained by conducting 
interviews with employees 
that quit their jobs
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Hierarchy Creation

• Needed a hierarchy of the organization to be able 
to compare the behavior of a user with their peers

• Data available: daily snapshots of LDAP hierarchy
• We created a normalized hierarchy by finding the 

most persistent relationships between supervisors 
and employees over the time period in 
consideration

• Resulted in ~200 sub-trees due to the business 
unit not containing the higher levels of the 
hierarchy
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Hierarchies
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• Examples of sub-trees
• ext---- nodes are external to the business unit



Supervised approach
Quitting Detection
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Problem statement: At any given time, predict if an 
employee is likely to quit the company:

• Restrict attention to (User U, Time T) tuples such that 
user U has data for at least 1 month leading up to time T

• 0.6M such total instances; 2K / 0.6M (~ 0.5%) instances 
are when user U has quit in time T, T-1 or T-2

• Subsample to deal with class-imbalance problem



Supervised approach
Quitting Detection

• Accuracy = 73% using Random forests 
(46% improvement compared to random baseline)

• Content features are most predictive for quitters 
and pseudo-quitters

• Confusion Matrix:
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Supervised approach
Quitting Detection
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Quitting Visualization Dashboard
ADAMS Dashboard 

Quitting Risk and Anomaly Detection Features Using 4,524 out of 4,524 records 1 Reset All 
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Quitting Visualization Dashboard

Weeks 

November December 2014 February March April May June 



Supervised approach
Quitting Detection - Insight

• Quitting scores tend to peak ~2 weeks before 
quitting
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Supervised approach
Quitting Detection - Insight

• Quitting scores tend to peak ~2 weeks before 
quitting
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Unsupervised approach
Quitting Detection

Detect anomalies with respect to two aspects:
• Detect if user is anomalous with respect to 

rest of the employees at each time instance
• Detect if user’s behavior has changed 

drastically over time
• Idea: In addition to features F, also 

construct differences
dF = F[:,T+1,:] – F[:,T,:]

• Run iForest on joint matrix [F;dF]
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Unsupervised approach
Quitting Detection
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Unsupervised approach
Quitting Detection
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• Can identify 46% of 
red-team events by 
tracking top 15% of 
users every week

• 85% by tracking top 
35%



Anomaly Visualization Dashboard
ADAMS Dashboard 

Quitting Risk and Anomaly Detection Features Using 4,524 out of 4,524 records 1 Reset All 
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Anomaly Visualization Dashboard

Anomaly Measure 
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Conclusion and Future Work

• End-user activity can be used to determine 
suspect insider threat behavior 

• False-alarms fairly significant, due to
• Rarity of abnormal events
• Statistical anomalies that do not translate to 

real world
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Conclusion and Future Work

• Further research needed to bring down false 
alarm rate

• Integration of external data sources
• Integration of psychological modeling
• Incorporating analyst feedback to select 

features
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Thank you!

Questions? 


